In this tutorial we will create a simple clock program.

Step 1: Open a new Single View Application and call it Clock or
something that you like. Use Auto Reference Counting (ARC). Don’t
select the storyboard option. Don’t really need it for this application.

Step 2: Add a Label to the ViewController.xib file. Label it
clockDisplay. The following will be added.

@property (weak, nonatomic) IBOutlet UlLabel *clockDisplay;
Step 3: Edit ViewController.h to add an instance of NSTimer. The
finished code looks like this. Notice the opening and closing brackets

that were added.

@interface ViewController : UlViewController

{
}

Note: The myTicker variable is going to be responsible for updating the
clockLabel.

NSTimer *myTicker;

Add the following new method declarations to ViewController.h. These
get added between @interface and @end. They define two methods
we will write ourselves to control the functionality of our program.

/* New Methods */
- (void) runTimer,
- (void) showActivity;

Step 4: Open ViewController.m and add the @synthesize for the
label property. This goes between @implementation and @end.

@synthesize clockDisplay;

Step 5: Add the method implementations that we just declared in the
.h file.

- (void)runTimer {
/I This starts the timer which fires the showActivity
/l method every 0.5 seconds



myTicker = [NSTimer scheduledTimerWithTimelnterval: 0.5 target:
self selector: @selector(showActivity) userinfo: nil repeats: YES];

}

/I This method is run every 0.5 seconds by the timer created
/['in the function runTimer
- (void)showActivity {

NSDateFormatter *formatter = [[NSDateFormatter alloc] init];
NSDate *date = [NSDate date];

// This will produce a time that looks like "12:15:00 PM".
[formatter setTimeStyle:NSDateFormatterMediumStyle];

/I This sets the label with the updated time.
[clockDisplay setText:[formatter stringFromDate:date]];

}

Step 6: The runTimer method only has 1 line of code split into
multiple lines. All it does is call the showActivity method every 0.5
seconds.

The showActivity method formats the clockDiplay label so it looks like
12:15:00 PM and sets it to the current time. As mentioned above, this
method is called every 0.5 seconds.

We want to call runTimer after the view loads. This is a common
method that, when Xcode generated ViewController.m, they included a
method called viewDidLoad. This method is called immediately after
the View items are loaded. Find the viewDidLoad method and now we
will edit it.

Add [self runTimer]; to the end of the method. It should now look like
this:

- (void)viewDidLoad
{

[self runTimer];
[super viewDidLoad];

}



Step 7: Compile and run to see the clock working.

Step 8: Add 2 additional buttons to ViewController.xib and wire
their IBAction (Touch Down events) as startClock and stopClock.

- (IBAction)startButton:(UIButton *)sender;
- (IBAction)stopButton:(UIButton *)sender;

Add a label and wire the property as CounterTime.
@property (weak, nonatomic) IBOutlet UlLabel *counterTime;

Step 9: Add: int counter as a variable in the ViewController.h file.
The variable declarations now look like this:

@interface ViewController : UlViewController

{
NSTimer *myTicker;
int counter;

}

Step 10: Switch to ViewController.m and add the counterTime to
the existing @synthesize line. The finished line now looks like:

@synthesize clockDisplay, counterTime;

Step 11: Add the following code to ViewController.m to create the
start and stop counter button behaviors.

- (IBAction)startButton:(UIButton *)sender {

myTicker = [NSTimer scheduledTimerWithTimelnterval:1
target:self selector:@selector(showTimerActivity) userinfo:nil
repeats:YES];

}

- (IBAction)stopButton:(UIButton *)sender {
[myTicker invalidate];
myTicker = nil;

}

Step 12: Add the following additional method, showTimerActivity,
which is run by the other methods we just added.



-(void)showTimerActivity;
{
counter += 1;
int hours = counter / 3600;
int minutes = counter / 60 - hours * 60;
int seconds = counter - hours * 3600 - minutes * 60;
counterTime.text = [NSString
stringWithFormat:@"%02d:%02d:%02d", hours, minutes, seconds];
}

Step 13: Run your finished app. Test the stop and start functionality.
You now have a working stop clock.



