In this project we will examine how to reverse a string in an iOS
application using Category. The concept is to experiment with
creating a Category for a project.

Sometimes we want to perform some task on an object that is not
included in the methods of that class. An example of this might be
reversing the order of characters in an NSString object. While we could
certainly do this in code, it would be better if we could add a class
method to NSString itself that would reverse any string. We will use a
category to add the string reversal method to NSString.

What is a Category?

A category is an Objective-C construct that allows us to add methods
to any class, regardless of whether we have the source code for that
class. Once we add a category to a class, all the methods in the
category are added to all instances of the class in our code. Since
categories are maintained in separate files, it is a simple matter to
include them in any project where the extended features of the class
are desired.

Step 1: Open a new Single View Application and call it Category
or something that you like. Use Auto Reference Counting (ARC). Don't
select the storyboard option. Don’t really need it for this application.

Step 2: Add a Text Field and a Label to the ViewController.xib file.

B

ooa
ooa

Step 3: In the properties for the Text Field, change the Return Key
to Done.

Step 4: In Xcode, select File->New->File and then select the option
to create an Objective-C Category.

Choose a template for your new file:

Il ios _
_ ! -
e
Cand C++ S
User Interface ol R
C Dat Objective-C class Objective-C
ore Data iy
Resource
Other _
-
B Mar (VS Y r

Step 5: Name the new category AddedMethods. Make sure that the
category is on NSString.

i

Choose options for your new file:

Category | AddedMethods| |

' Category on | NS5tring ¥ |
Step 6: Click Next, then Create. Two new files will be generated with
the names:

NSString+AddedMethods.h
NSString+AddedMethods.m

This file naming convention makes it easy to see categories that we
have added.

Step 7: Open NSString+AddedMethods.h and add the declaration
for our new class method in between @interface and @end as shown
below:

+ (NSString *)stringByReversingString: (NSString *)str;
Save the file.

Step 8: Open NSString+AddedMethods.m and add the following
method implementation between @implementation and @end as show
below:

+ (NSString *)stringByReversingString:(NSString *)str
{
char cString[50];
char revString[50];
NSString *retval;
[str getCString:cString
maxLength:[str
lengthOfBytesUsingEncoding:NSUTF8StringEncoding] + 1
encoding:NSUTF8StringEncoding];
printf("%s", cString);

for (inti=0; i< strlen(cString); i++) {
revString|[i] = cString[strlen(cString) - (i + 1)];
}
revString[strlen(cString)] = "\0';
retval = [NSString stringWithCString:revString
encoding:NSUTF8StringEncoding];

return retval;

}

It is much easier to index into C strings and build them up character
by character than it would be for NSString objects.

In this method, we set up two buffers (char arrays). Then we geta C
string representation of the str argument by using the
getCString:maxLength:encoding method. The maxLength parameter
must be one more than the number of bytes in the NSString to
account for the NULL terminator on C strings.

We then copy each character from the cString to the revString in
reverse order (in the for loop). After doing this, we put a NULL
terminator ('\0’) at the end of the reversed string, create a new
NSString (retval) from the contents of the reversed string, and return
it.

Step 9: Import the category in order to use it. Add the following line
to the top of ViewController.h.

#import "NSString+AddMethods.h"

Step 10: Wire the Label as a property. Call it output. The finished
code looks like:

@property (weak, nonatomic) IBOutlet UlLabel *output;

Step 11: Right-Click on the Text Field and wire the Did End on Exit
event and call it inputDone. The finished code looks like:

- (IBAction)inputDone:(UITextField *)sender;

Step 12: Switch to ViewController.m and add the code to make the
text field’s “Did End on Exit” work. The finished method looks like:

- (IBAction)inputDone:(UITextField *)sender {
self.output.text = [NSString stringByReversingString:sender.text];
[sender resignFirstResponder];

}

This action method sets the output label’s text property to the
reversed contents of the input text field’s text property using the
stringByReversingString method we just added to the NSString class.

After doing this, the method calls resignFirstResponder on the sender,
which dismisses the keyboard.

Step 13: Run the program, you are done!

The program output looks like this:

olwe
Mam.mm
22 amﬂ

| Done

.M23
on

i

