In this tutorial we are going to build a simple calculator using buttons that are
all linked together using the same method. We will also add our own method
to the source code to create some additional functionality.

Step 1: Open Xcode and select Create a new Xcode Project from the
Welcome to Xcode menu.

Step 2: Select Single View Application using the template. Name the
project Calculator or whatever you want. Select Automatic Reference
Counting but do NOT select to use the storyboard feature.

Step 3: Xcode automatically creates the directory structure and adds essential
frameworks to it. You can explore the directory structure to check out the
content of the directory. Click on ViewController.xib to open it in the center
view pane.

Step 4: Drag 1 Label and 17 Round Rect Buttons to the View so that you
make something that looks like this:

9 0 Clr . /



Step 5: Control Drag the Label to the ViewController.h file to add it as a
property. Call it theTotal and you should see this:

@property (weak, nonatomic) IBOutlet UlLabel *theTotal,

Next: Add the @synthesize in ViewController.m in between the
@implementation and the @End. So now you have:

@synthesize theTotal;

Step 6: Wire ONLY 1 of the number button’s Touch Down event to
ViewController.h. Call the IBAction numButtons. You should see this added:

- (IBAction)numButtons:(UIButton *)sender;

Connect ALL of the other buttons to this same IBAction. Click on the little
black dot next to this line of code and drag the line to all of the other number
buttons. Now all of the numbers are connected to this one IBAction.

Step 7: Same as in step 6, Wire the Touch Down event of the +, -, /, *
buttons (4 of them total) to another IBAction and call it opButtons.

- (IBAction)opButtons:(UIButton *)sender;

Step 8: Wire the Touch Down event for the Decimal button to its own
IBAction and call it decimalButton.

- (IBAction)decimalButton:(UIButton *)sender;

Step 9: Wire the Touch Down event for the Clear button to its own IBAction
and call it clrButton.

- (IBAction)clrButton:(UIButton *)sender;

Step 10: Wire the Touch Down event for the Equals button to its own
IBAction and call it eqButton.

- (IBAction)eqButton:(UIButton *)sender;

Step 11: Add a function prototype to ViewController.h for a method we are
going to define ourselves. The method should be called, doEquals and its not
connected to any GUI controls.



-(void) doEquals;

Step 12: While you still have the ViewController.h file open, we need to add
the data members that we will be using to keep track of the calculator data.
Add 3 database members (variables) to ViewController.h. You will also need to
add the opening and closing brackets, { and }. The finished code is:

@interface ViewController : UlViewController
{

int operator;

NSString *previous;

NSString *current;
h

Step 13: Switch over to the ViewController.m file. We are now going to add
the functionality to make the methods work for our calculator. First we need to
initialize our variables to starting values. We can do this in our ViewDidlLoad
method. Initialize the 3 data members to “"0” in the viewDidLoad method of
ViewController.m by including the following code:

- (void)viewDidLoad

{
operator=0;
current =@"0";
previous =@"0";
[super viewDidLoad];

}

Step 14: Fill in the method for the number button control to capture the
buttons pressed and update the total label with the value entered. The finished
method looks like:

- (IBAction)numButtons:(UIButton *)sender {

NSString *str= (NSString* )[sender currentTitle];
if(fcurrent isEqualToString:@"0"])
{
current= str;
lelse

{
current=[current stringByAppendingString:str];

}



[theTotal setText:current];

}

Step 15: Go ahead and try it out to make sure the number buttons are
working properly.

Step 16: Fill in the code for the operator buttons in opButtons. Add the
following code to the opButtons method in ViewController.m.

- (IBAction)opButtons: (UIButton *)sender {

NSString *tmpstr =[current substringFromIndex:([current
length]-1)];

if([tmpstr isEqualToString: @"."])

{
current = (NSString *)[current substringToIndex:([current
length] - 1)];

[theTotal setText:current];

by

NSString *str=(NSString *)[sender currentTitle];
if(operator >=1 && operator<=4)

¢ [self doEquals];

ﬁf(operator!:S)

¢ previous = [current copy];
current =@"0",

% ([str isEqualToString: @"+"])

operator=1;

} else if([str isEqualToString:@"-"])
{



operator=2;

} else if([str isEqualToString: @"*"])
{

operator=3;

} else if([str isEqualToString:@"/"])
{

b
¥

Step 17: Fill in the code for the decimal button functionality. Add the
following code to the decimalButton method in ViewController.m.

operator=4;

- (IBAction)decimalButton:(UIButton *)sender {
NSRange range = [current

rangeOfString:@"."options:(NSCaselnsensitiveSearch)];
if (range.location == NSNotFound)

E:urrent =[current stringByAppendingString:@"."];

%theTotaI setText:current];
}
Step 18: Add the doEquals implementation to ViewController.m.
i(VOid) doEquals

if (operator >= 1 && operator <= 4) {
NSDecimalNumber* num1 = 0;
num1 = [NSDecimalNumber decimalNumberWithString:previous];
NSDecimalNumber* num2 = 0;
num2 = [NSDecimalNumber decimalNumberWithString:current];
if (operator == 1)
{
num1 = [num1 decimalNumberByAdding:num2];
current = [NSString stringWithString:[num1 stringValue]];
} else if (operator == 2){



num? = [num1 decimalNumberBySubtracting:num2];
current = [NSString stringWithString:[num1 stringValue]];
} else if (operator == 3}
num7 = [num1 decimalNumberByMultiplyingBy:num2];
current = [NSString stringWithString:[num1 stringValue]];
} else if (operator == 4){
if (I[current isEqualToString:@"0"]) {
num1 = [num1 decimalNumberByDividingBy:num2];
current = [NSString stringWithString:[num1 stringValue]];
}
}

[theTotal setText:current];
previous = [current copy];
current = @"0";
operator = 5;
}
¥

Step 19: Tell the equals button to run the doEquals method when the Touch
Down event occurs. Add the following code to the eqButton method in
ViewController.m.

- (IBAction)eqButton:(UIButton *)sender {
[self doEquals];
}

Step 20: Run the project and try out the +, - and = buttons.

Step 21: Tell the Clear button to reset the data to 0 when the Touch Down
event occurs. Add the following code to the clearButton method in
ViewController.m.

- (IBAction)clrButton:(UIButton *)sender {
current=@"0";
previous=@"0";
operator=0;
[theTotal setText:current];
§

Step 22: You are done. You have a working calculator!



