Tic-Tac-Toe - Beginner iOS Application

(1) Create a new Xcode project. Use the "Single View" template.

Choose a template for your new project

_

B ios
Framerwark & Library = |
Caber =
Master-Detail CipenCL Came Page-Based
& o5y Apalication Application Apglication
Application
Framework & Libsary ‘\I: i o 'ﬁ‘
Apgplication Fug-in e i {0 0 I,
Systermn Flug-in
Onher Tabhad Apphicatian Litsliry &palicarion Emipty Applicatian saricekit Gama

(2) Drag a background board, X and O images into a project folder.

®00
P M | A Tictaal
m I Q A €
‘nITlCTEI.tTDE

=~ 2 targets, i05 SDK 7.0
¥ TicTacToe
= X.png
w tic_tac_toe.png
« 0.png
1 AppDelegate.h
m AppDelegate.m

LI Rt L

i ViewController.h
' ViewController.m
I Images.xXcassets
B Supporting Files
B TicTacToeTests
* Frameworks
* | Products

(3) Click on Main.storyboard and Drag an Image View to the
window. This will hold the background image. Change the property to
show the background image you are using.

(4) Drag 6 buttons and place them in the squares on top of the
background image.

Now your UI should look something like this:

Button Button Button

Button Button Button

Button Button Button

Eventually you are going to want to get rid of the “"Button” labels on
the buttons since they are going to show images instead.

(5) Change the tag property of all of the buttons to be 1 through 9.
Look in the view section of the properties window under “*Mode.”

View

Mode | Scale To Fill

Tag 1]~
Interaction (v User Interaction Enabled
Multiple Touch
Alpha 15
Background | — | Default
Tint | DD | Default

Drawing || Opaque Hidden
[Clears Graphics Context
Clip Subviews

(6) Wire the first button to ViewController.h, in between the
@interface and the @end.

rFr VoA el W LR el
ff TicTacToe
O o o ff

dutiom | Bution Hulton // Created by bhecker on 2/6/14

/f Copyright (c) 2014 ITU. All

~ Bution - Bution ' #import <UIKit/UIKit.h>

@interface ViewController : UIVi

e -
:
Oid Ead Oim Bl (] o —

Edting Ctanges
F&ting Oid Regin
Edd

Touch Down Bspeat
Touch Orag Enber

Touch Dirag Exii

Name the IBAction squarePress and change the type to UIButton:

Connection | Action

Object | View Controller

Name squarePress

Type | UlButton v

qr

Event | Touch Down

Arguments | Sender

a4

Cancel Connect
The finished method looks like this:

® — (IBAction)squarePress:(UIButton *)sender;

Drag the other 8 buttons to this same method.

wimport <UIKit/UIK1IT. he

@interface ViewController : UIViewController

% =, {IBAction)squarePress: (UIButton *lseniEr!

Bend

Check to make sure they are all connected by hovering your mouse
over the “connection dot” next to the method.

// TicTacToe

//

// Created by b
// Copyright (c

(@ o o '
Button tButtor Button

§ Button - Button Button - Button i:Euttl:Ih = Butto

Button

Button

Button
& Button - Button Button - Button [Button - Butto

#import <UIKit/U

@interface View(

Button | Button Button |

Button - Button Button - Button | Button - Button

© - (IBAction)squa

@end

Important notes:

e Wire to ViewController.h and not the ViewController.m.
e Add everything in between the @interface and @end.

(7) Lets write some source code now! First let’s test the buttons. Add
the following code and run the project. Look at the lower console
window and the button tag numbers should show as you click on the
different buttons.

NSInteger i = [sender tag];
NSLog(@"test %d", i);

Fix any problems now otherwise your game functionality isn’t going to
work right.

(8) Add a counter to ViewController.h to keep track of how many
turns have taken place and some chars to remember what was picked.

int turns:

(9) Set the number of turns to 0 in the ViewDidLoad method:

- (void)viewDidLoad

{
[super viewDidLoad];
turns = 0;

}

(10) We are going to play Tic-Tac-Toe by changing the image when
the user clicks a button. The user goes first and will be X. The
computer will be O and will automatically go next. Copy the following
button code into the squarePress method and make sure the button
images are named appropriately.

- (IBAction)squarePress:(UIButton *)sender {
// the button tag testing
NSInteger i = [sender tag];
NSLog(@"test %d", i);

// the button that was clicked gets an x

UlButton *tmpButton = (UIButton *)[self.view
viewWithTag:i];

[tmpButton setlmage:[Ulimage
imageNamed:@"x.png"]
forState:UIControlStateNormal;

[tmpButton setTag:i+10]; // item can't be selected by
computer

turns++;

if([self checkForWin]) // see for a winner

{
UlAlertView *alert = [[UlAlertView alloc]

initWithTitle:@"You won!" message:@"Great job, you

beat the computer1” delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];
[alert show];
turns=10;

}

I/ check to see if there are turns left
if (turns < 9)
{
I/l randomly select another button for the
computer's turn
int r = arc4random() % 9; // randomly select a
number between 0 and 9
UlButton *compButton = (UIButton *)[self.view
viewWithTag:r]; // get the square

/] see if the square is selectable. If not, select
another one
while (!/[[compButton.superview viewWithTag:r]
isKindOfClass:[UIButton class]])
{
r = arcdrandom() % 9;
compButton = (UIButton *)[self.view
viewWithTag:r];
NSLog(@"random %d", r);
}

[compButton setimage:[Ulimage
imageNamed:@"o.png"]
forState:UlControlStateNormal];

[compButton setTag:r+10];

turns++;

if([self checkForWin]) // see for a winner
{

UlAlertView *alert = [[UIAlertView alloc]
initWithTitle: @"Computer Won!" message:@"You got
beat by the computer. Try again!" delegate:nil
cancelButtonTitle:@"OK" otherButtonTitles:nil];

[alert show];

turns=10:;

}
}
}

(11) There needs to be a check for a winner. Add this method to your
ViewController.m file:

/I method that will check to see if someone has won
returns TRUE if someone wins
-(BOOL) checkForWin {

UlButton *Button1 = (UIButton *)[self.view
viewWithTag:11];

UlButton *Button2 = (UlButton *)[self.view
viewWithTag:12];

UlButton *Button3 = (UIButton *)[self.view
viewWithTag:13];

UlButton *Button4 = (UlButton *)[self.view
viewWithTag:14];

UlButton *Button5 = (UIButton *)[self.view
viewWithTag:15];

UlButton *Button6 = (UlButton *)[self.view
viewWithTag:16];

UlButton *Button7 = (UIButton *)[self.view
viewWithTag:17];

UlButton *Button8 = (UlButton *)[self.view
viewWithTag:18];

UlButton *Button9 = (UIButton *)[self.view
viewWithTag:19];

[HORIZONTAL WINS
if((Button1.currentimage ==
Button2.currentimage) & (Button2.currentimage ==

Button3.currentimage) & (Button1.currentimage !=
NULL))

{
}

if((Button4.currentimage ==
Button5.currentimage) & (Button5.currentimage ==
Button6.currentimage) & (Button4.currentimage !=
NULL))

{
}

if((Button7.currentimage ==
Button8.currentimage) & (Button8.currentimage ==
Button9.currentimage) & (Button7.currentimage !=
NULL))

{

return YES;

return YES;

return YES;

}
// VERTICAL WINS

if((Button1.currentimage ==
Button4.currentimage) & (Button4.currentimage ==

Button7.currentimage) & (Button1.currentimage !=
NULL))

{
}

if((Button2.currentimage ==
Button5.currentimage) & (Button5.currentimage ==
Button8.currentimage) & (Button2.currentimage !=
NULL))

{
}

if((Button3.currentimage ==
Button6.currentimage) & (Button6.currentimage ==
Button9.currentimage) & (Button3.currentimage !=
NULL))

{

}
// DIAGONAL WINS

If((Button1.currentimage ==
Button5.currentimage) & (Button5.currentimage ==

Button9.currentimage) & (Button1.currentimage !=
NULL))

{
}

return YES;

return YES;

return YES;

return YES;

if((Button3.currentimage ==
Button5.currentimage) & (Button5.currentimage ==
Button7.currentimage) & (Button3.currentimage !=

NULL))
{
return YES;
}
return NO;
}

(12) You are done! Run and enjoy!

I left out the check for a tie game. You could also add the functionality
to reset the board. Maybe a reset button would be a good idea? You
could also change the code to update the status of a label with who
won or keep track of how many times you and the computer beat each
other. There are a lot of simple modification you could make with this
program to continue your learning process. Have fun!

